Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball
نویسندگان
چکیده
Solvability issues of four boundary value problems for a nonlocal biharmonic equation in the unit ball are investigated. Dirichlet, Neumann, Navier and Riquier–Neumann studied. For under consideration, existence uniqueness theorems proved. Necessary sufficient conditions solvability all obtained an integral representations solutions given terms corresponding Green’s functions.
منابع مشابه
Nonlocal Boundary Value Problems
The theory of the nonlocal linear boundary value problems is still on the level of examples. Any attempt to encompass them by a unified scheme sticks upon the lack of general methods. Here we are to outline an algebraic approach to linear nonlocal boundary value problems. It is based on the notion of convolution of linear operator and on operational calculus on it. Our operators are right inver...
متن کاملOn the Boundary Integral Equation Method for a Mixed Boundary Value Problem of the Biharmonic Equation
This paper is concerned with weak solution of a mixed boundary value problem for the biharmonic equation in the plane. Using Green’s formula, the problem is converted into a system of Fredholm integral equations for the unknown data on different part of the boundary. Existence and uniqueness of the solutions of the system of boundary integral equations are established in appropriate Sobolev spa...
متن کاملMultiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10071158